United States Patent

US009448780B1

(12) 10) Patent No.: US 9,448,780 B1
Hall 45) Date of Patent: Sep. 20, 2016
(54) PACKAGE MANAGER VERIFIER 2006/0184932 Al* 82006 Burnley G0761F7§§1/22
. . 2007/0140131 Al* 6/2007 Malloycc.... HOA4L 43/026
(75) Inventor: Ben Hall, San Francisco, CA (US) 370/241
. . 2007/0271552 Al* 112007 Pulleyccoeeovnennns GOG6F 8/60
(73) Assignee: Zynga Inc., San Francisco, CA (US) Y 717/120
2009/0007096 Al* 1/2009 Chavez HO4L 63/20
(*) Notice: Subject to any disclaimer, the term of this 717/176
patent is extended or adjusted under 35 2010/0058320 A1* 3/2010 Milligan GOGF 9/44505
717/173
US.C. 154(b) by 811 days. 2011/0107299 Al* 5/2011 Dehaan GOGF 9/45533
717/121
(21) Appl. No.: 13/324,779 2012/0117234 Al* 5/2012 Miryanov GOSF 8/60
709/224
(22) Filed: Dec. 13, 2011 2013/0268915 ALl™* 102013 GuU ..coevvvvvviviiies GOG6F 8/71
717/121
(D 25352/445 (2006.01) OTHER PUBLICATIONS
(52) U.S. CL Maximum RPM: Taking the Red Hat Package Manager to the Limit,
CPC .o GOG6F 8/61 (2013.01) Chapter 6. Using RPM to Verify Installed Packages. Nov. 2011.
(58) Field of Classification Search Located at: http://www.rpm.org/max-rpny's1-rpm-verify-what-to-
None verify. html . *
See application file for complete search history. Puppet—"Puppet ~ CookBook”—located at hitp://www.pup-
petcookbook.com/ Captured on Dec. 2, 2011.*
: Maximum RPM-2011, Chapter 6. Using RPM to Verify Installed
56 Refi Cited » nap g
(56) clerences Ste packages, captured in 2011 located at http://www.rpm.org/max-
U.S. PATENT DOCUMENTS rpm/s1-rpm-verify-what-to-verify. html.*
7,203,745 B2* 4/2007 Sheehycocccooonn.... GOGF 8/61 * cited by examiner
706/45
7,536,687 B1* 5/2009 Myerscccccoovveurnn. GOGF 8/68 Primary Examiner — Wei Zhen
7’636,780 Bz 3k 12/2009 La.Vln G06F7541‘;é? ASSiszanz Examiner 7 Hossain MorShed
709/223 (74) Attorney, Agent, or Firm — Schwegman Lundberg &
7,953,744 B2* 5/2011 Gharat GOGF 11/3688 Woessner, P.A.
707/758
8,185,889 B2* 5/2012 Kindercoovvrnne.. GO6F 8/61 (57) ABSTRACT
717/136
8,250,570 B2* 8/2012 Suorsa GO6F 8/61 An RPM verifier is described. A master configuration file
. 717/172 and a list of host servers are retrieved. The master configu-
8,612,398 B2* 12/2013 Jarreltcconeen G0167Fs§2/g}1 ration file defines rules for approved versions of software
8.762.931 B2* 6/2014 Vidal oo GO6F 8/453 packages installed on each host server in the list. The RPM
717/101 verifier queries each host server in the list for a version
2004/0181790 A1* 9/2004 Herrickccccovvvnnnn GOGF 8/60 identifier of one or more software packages installed on each
y « o) 717/ 1/68 host server. The rules are applied to the version identifier to
2005/0198099 AL* 972005 Motsinger G067FO§ /12(5)8 identify one or more mis-configured software packages on
2006/0075001 Al* 4/2006 Canning GOGF 8/65 each host server.
2006/0161895 Al* 7/2006 Speeter GOGF 8/71
717/121 19 Claims, 5 Drawing Sheets
(100
SERVER
102
[130 /132
HOST SERVER HOS;‘SERVEQ
108 ale]
SDFTWA”RE SOFTWARE
| Wioaz ‘ oy ‘
SACKAGE 6 o PACKAGE b
' V20115] e ‘ (v3.2) 128 ‘
SOFTWA_RE SOETW&RE SOFTWA_RE_
' ey] l iy ' ‘ ey ‘

U.S. Patent Sep. 20, 2016 Sheet 1 of 5 US 9,448,780 B1
/ 100

oo
{ {
i t
! SERVER ?
! 102 !
{ ——— i
i b
i i
{ §
{ i
i }
i §
{ , “ i
! { ‘
; (" NETWORK 104) E
| . : !
: 136 AAAAAAA 132 :
- (’ ~
’ :
- _,_,/ ________ et T e e A e -
; HOST SERVER HOST SERVER ; HOST SERVER :
| 108 108 ; 110 !
: SOFTWARE SOFTWARE ; SOFTWARE :
! PACKAGE A PACKAGE A ; PACKAGE A g
: : :
i }
i {
i §
i i
i i
| §
i §
i i
i i
i i
{ f
{ §
i i
i i

§

§

Sam cmm imms mms mmm mmm amm m s Emm wmm tm: ms EEA mmm i e REs WEE Smx fm R RRR Gmx SR (xms RER Emm SR (o RES Mex E xm s mER mmm EE mmr mes mxx REE Gnm mms mms smm Gwm s mmr

s mmn mmm mmm cnms mm mma mmm tmm e R emR Gxm e s mRR exm G wms R SEx <= e s EER Gmm e s mER Exm

(Vi0y112

(V1.03 112

(V123124

em e e e e
SOFTWARE | SOFTWARE || | SOFTWARE
PACKAGE B | PACKAGEB 1] PACKAGE D
V2.0) 144 | (v20)114 § ! (V3.2) 126
MMMMMMMMMM {
i
SOFTWARE SOFTWARE i SOFTWARE
PACKAGE C PACKAGE C ; PACKAGE E
(v13) 148 (V1.1) 122 | (V2 4y 128
i
{

U.S. Patent

Sep. 20, 2016 Sheet 2 of 5 US 9,448,780 B1
SERVER 102
MASTER CONFIG LIST OF HOST
FILE SERVERS
204 206
RPM VERIFIER
it MOBDULE e
202
RPM VERIFIER MODULE
202
QUERYING PARSING
MODULE — MODULE
202 304

:

308

ANALYSIS MODULE

FIG. 3

U.S. Patent

400 \

Sep. 20, 2016 Sheet 3 of 5

LOAD MASTER CONFIG FILE
AND LIST OF SERVERS TO
CHECK
402

|

QUERY EACH SERVER IN THE
LIST OF SERVERS TO CHECK
404

|

RECEIVE A LIST OF INSTALLED
SOFTWARE PACKAGES ON
EACH QUERIED SERVER
408

i

FPARSE AND ANALYZE LIST OF
INSTALLED SOFTWARE
PACKAGES ON EACH QUERIED
SERVER
408

FiG. 4

US 9,448,780 B1

U.S. Patent

Sep. 20, 2016

Sheet 4 of 5

LOAD PARSING RULES FROM
CONFIG FiLE
a0z

l

COMPARE DATA WITH MASTER
CONFIG FILE
504

l

GENERATE VERSION
DIFFERENCES BASED ON
SOFTWARE PACKAGE AND/OR
HOST SERVER
506

FIG. 5

US 9,448,780 B1

U.S. Patent Sep. 20, 2016

Sheet

50f5 US 9,448,780 B1

Social Networking System
624 622 82

Game Networking System

624 62 622

626

Xﬁzﬁb
T e o630
T Client Jat—f Network el Cent | 0%
® ﬁ_@_ﬂ ®
® L
® &
R L~~~ 53
HG 6 63 Client 8" Client 630
02~ Processor 700
- &0
i«&-mw Cache | /%%
Bridge Interface E
% High Performance VG Bus %
< 3 3 3 >
4
749] O Bus 706 Sysstem — 714
Bridge Memory
% Standard VO Bus %
708
g~ Mass 10 Ports + 720

Storage

FIG. 7

US 9,448,780 B1

1
PACKAGE MANAGER VERIFIER

TECHNICAL FIELD

The present disclosure generally relates to computers and,
in example embodiments, to computer-implemented net-
works.

BACKGROUND

Cloud computing and various distributed networks are
becoming more prevalent to provide reliability and capacity
to handle multiples of requests at the same time. Different
versions of software packages may be installed on each
server in the server pool/cloud. Software packages are
generally installed from a local repository with instructions
for the server to install from the local repository. Accord-
ingly different software versions may be installed.

When new server machines are brought up, software
packages are continuously being installed. However, there
may be variations in the versions of each individual software
package that is being installed. Typically, “the latest version”
of an application/software package is installed but it is not
always possible to determine which particular version is
installed. Accordingly, different versions of applications
may be installed on different servers in a server pool.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings in which:

FIG. 1 is a block diagram illustrating an example of a
system for implementing disclosed embodiments;

FIG. 2 is a block diagram illustrating an example server
for implementing an RPM verifier module;

FIG. 3 is a block diagram illustrating an example RPM
verifier module;

FIG. 4 is a flow diagram illustrating one example embodi-
ment of a method for operating an RPM verifier module;

FIG. 5 is a flow diagram illustrating one example embodi-
ment of a method for identifying mis-configured software
packages on host servers;

FIG. 6 is a block diagram illustrating an example network
environment; and

FIG. 7 is a block diagram illustrating an example of a
computer system architecture.

DETAILED DESCRIPTION

Although the present disclosure has been described with
reference to specific example embodiments, it will be evi-
dent that various modifications and changes may be made to
these embodiments without departing from the broader spirit
and scope of the disclosure. Accordingly, the specification
and drawings are to be regarded in an illustrative rather than
a restrictive sense.

An RPM (RPM Package Manager) verifier module is
described. The verifier module may also be referred to as a
software package management verifier module. The RPM is
apackage management system used by system administrator
to perform software installation and maintenance on mul-
tiple machines. The name RPM variously refers to the .rpm
file format, files in this format, software packaged in such
files, and the package manager itself. The use of RPM rather
than manual building and installation of software has advan-

10

15

20

25

30

35

40

45

50

55

60

65

2

tages such as simplicity, consistency and the ability for these
processes to be automated and non-interactive.

The RPM verifier loads a master configuration file and a
list of host servers. The master configuration file defines
rules for approved versions of software packages installed
on each host server in the list. The RPM verifier queries each
host server in the list for a version identifier of one or more
software packages installed on each host server. The rules
are applied to the version identifier to identify one or more
mis-configured software packages on each host server.

In one embodiment, the RPM verifier is configured to
identify one or more software packages missing from a host
server, one or more software packages installed on a host
server having a newer version compared to the approved
version of the corresponding software package for the host
server as defined in the rules, or one or more software
packages installed on a host server having an older version
compared to the approved version of the corresponding
software package for the host server as defined in the rules.

In another embodiment, the RPM verifier module has a
querying module, a parsing module, and an analysis module.
The querying module queries each host server in the list for
the version identifier of one or more installed software
packages in each host server. The parsing module parses
information received from each host server in response to
the query for a host server name, a software package
installed on each host server, and a version of the installed
software package. The analysis module applies the rules to
the parsed information to identify one or more software
packages missing from each host server, and one or more
software packages installed on each host server having a
newer or older version compared to the approved version of
the corresponding software package for each host server as
defined in the rules.

In one embodiment, the analysis module generates a
report based on software packages. The report identifies a
number of host servers having a version of an installed
software package matching the version of the corresponding
software package approved in the rules, a number of host
servers having the version of the installed software package
ahead of the version of the corresponding software package
approved in the rules, a number of host servers having the
version of the installed software package behind the version
of'the corresponding software package approved in the rules,
and a number of host servers missing the installed software
package specified in the rules.

In another embodiment, the analysis module generates a
report based on each host server. The report identifies a
number of installed software packages having a version
matching the version of the corresponding software pack-
ages approved in the rules for each host server, a number of
installed software packages having a version ahead of the
version of the corresponding software packages approved in
the rules for each host server, a number of installed software
packages having a version behind the version of the corre-
sponding software packages approved in the rules for each
host server, and a number of software packages missing
from each host server.

In one embodiment, the rules are based on a name of the
software package, a version of the software package, and the
name of host servers where the software package is to be
installed. The rules may also define an approved version of
a first software package for a first set of host servers, and an
approved version of the first software package for a second
set of host servers.

In another embodiment, the rules comprises a first set of
rules applicable to a first set of host servers identified based

US 9,448,780 B1

3

on host server names, and a second set of rules applicable to
a second set of host servers identified based on host server
names.

In another embodiment, the rules comprises a first set of
rules applicable to a first set of host servers of a first server
pool, and a second set of rules applicable to a second set of
host servers of a second server pool.

EXAMPLE NETWORKING SYSTEM

FIG. 1 illustrates an example of a system for implement-
ing various disclosed embodiments. In particular embodi-
ments, system 100 comprises a server 102, a network 104,
a first server pool 130 (host servers 106 and 108), a second
server pool 132 (host server 110).

The components of system 100 can be connected to each
other in any suitable configuration, using any suitable type
of connection. The components may be connected directly
or over network 104, which may be any suitable network.
For example, one or more portions of network 104 may be
an ad hoc network, an intranet, an extranet, a virtual private
network (VPN), a local area network (LAN), a wireless
LAN (WLAN), a wide area network (WAN), a wireless
WAN (WWAN), a metropolitan area network (MAN), a
portion of the Internet, a portion of the Public Switched
Telephone Network (PSTN), a cellular telephone network,
another type of network, or a combination of two or more
such networks.

Each host server may be identified with its host server
name or IP address.

Each host server may include one or more installed
software packages. For example, version 1.0 of software
package A 112, version 2.0 of software package B 114, and
version 1.3 of software package C 116 may be installed on
host server 106. Version 1.0 of software package A 112 and
version 1.1 of software package C 122 may be installed on
host server 108. Version 1.2 of software package A 124,
version 3.2 of software package D 126, and version 2.4 of
software package E 128 may be installed on host server 110.

The server 102 may include an RPM verifier module that
is used to determine the versions of installed software
packages on each host server and compare it to a master
configuration file to determine mis-configured installed or
missing software packages on each host server. The RPM
verifier module is discussed in more detail with respect to
FIG. 2.

FIG. 2 is a block diagram illustrating the example server
102 for implementing an RPM verifier module 202. The
RPM verifier module 202 loads a master configuration file
204 and a list of host servers 206 stored in a storage device
to verify software packages. The storage device may be
internal or external to the server 102. The list of host servers
206 may identify the host servers by their host names or IP
address. Furthermore, the list of host servers 206 may
identify host servers belonging on a server pool. For
example, FIG. 1 illustrates host servers 106 and 108 belong-
ing to server pool 130, and host server 110 belonging to
server pool 132.

The master configuration file 204 includes rules for
checking the software packages in the host servers. For
example, the rules may define the approved versions of a
corresponding software package for a host server or host
servers from a pool of servers.

For example, the rule may require the software package A
installed on every host servers 106, 108, 110 to be version

10

15

40

45

55

60

65

4

1.0. FIG. 1 illustrates a system that does not comply with this
rule because the version of software package A in host server
110 is not 1.0 but 1.2.

In another example, the rule may require the software
package A installed on every host servers 106, 108, 110 to
be at least version 1.0. FIG. 1 illustrates a system that
complies with this rule because the versions of software
package A in host servers 106, 108, 110 are at least version
1.0.

In another example, the rule may require the software
package A installed on host servers 106 and 108 of server
pool 130 to be version 1.0 and the software package A
installed on host server 110 of server pool 132 to be at least
version 1.0. FIG. 1 illustrates a system that complies with
this rule because the version of software package A of host
servers 106 and 108 are versions 1.0 and the version of the
software package A of host server 110 (version 1.2) is
greater or ahead of version 1.0.

In another example, the rule may require the software
package B installed on every host server 106 and 108 of
server pool 130 to be version 2.0. FIG. 1 illustrates a system
that does not comply with this rule because software pack-
age B is missing in host server 108.

In another example, the rule may require the software
package C installed on every host server 106 and 108 of
server pool 130 to be at least version 1.1 and the software
package D and E installed on host server 110 of server pool
132 to be versions 3.2 and 2.4 respectively. FIG. 1 illustrates
a system that complies with this rule because software
package C 116 and 122 are at least version 1.1 and software
package D and E are version 3.2 and version 2.4 respec-
tively.

In another example, the rule may require the software
package A installed on every server regardless of its version.
FIG. 1 illustrates a system that complies with this rule
because software package A is installed in each host server
106, 108, and 110.

In an alternative embodiment, business logic may be
applied on the results to determine which software packages
are missing, has a newer or older version installed compared
to the approved version. The server 102 may easily manipu-
late the master configuration file 204 that controls the rules
for the business logic. As previously illustrated, different
rule sets may be applied on a per hostname basis or on a web
pool basis.

FIG. 3 is a block diagram illustrating an example of the
RPM verifier module 202. The RPM verifier module 202
includes a querying module 302, a parsing module 304, and
an analysis module 306. After the RPM verifier module 202
loads the master configuration file 204 and the list of host
servers 206, both shown in FIG. 2, the querying module 302
uses PDSH to issue a query on each host server or destina-
tion server. In one embodiment, the querying module 302
issues a Linux based command to determine the version
identifier (e.g., version 1.x) of installed software packages
on the corresponding host server.

The parsing module 304 parses information received from
each host server in response to the query. The information
may include a list of software packages saved or installed on
a host server. In another embodiment, the information may
include a name of the host server, the IP address of the host
server, the corresponding server pool associated with the
host server, the name of software packages installed on each
host server, and the version of the software packages
installed on each server.

The analysis module 306 compares the parsed informa-
tion against the master configuration file. In one embodi-

US 9,448,780 B1

5

ment, the analysis module 306 applies the rules from the
master configuration file 204 to the parsed information to
identify one or more software packages missing from each
host server. In another embodiment, the analysis module 306
identifies one or more software packages installed on each
host server having a newer (ahead) or older (behind) version
compared to the approved version of the corresponding
software package for each host server as defined in the rules.

In one embodiment, the analysis module 306 generates a
report based on software packages. For example, the report
may identify the number of host servers having a version of
installed software packages matching the version of the
corresponding software packages approved in the rules, a
number of host servers having the version of the installed
software package ahead of the version of the corresponding
software package approved in the rules, a number of host
servers having the version of the installed software package
behind the version of the corresponding software package
approved in the rules, and a number of host servers missing
the installed software package specified in the rules.

In another embodiment, the analysis module 206 gener-
ates a report based on each host server. For example, the
report identifies a number of installed software packages
having a version matching the version of the corresponding
software packages approved in the rules for each host server,
a number of installed software packages having a version
ahead of the version of the corresponding software packages
approved in the rules for each host server, a number of
installed software packages having a version behind the
version of the corresponding software packages approved in
the rules for each host server, and a number of software
packages missing from each host server.

For example, the analysis module 306 may identify the
following summary results after running the process on each
host server:

Total number of packages not found

Total number of version ahead

Total number of version behind

Total successes

In another example, the analysis module 206 may group
the results by software packages:

RPM Name (e.g., Software package A)

Required version (e.g., 2.2 for software package A)

Results (e.g., match: 1423, ahead: 0, behind: 4, not found:

2).

In another example, the analysis module 206 may group
the results by specific hosts:

Host Name (e.g., tool-web-10-101-41-109)

IP address (e.g., 10.101.41.109)

Results (e.g., match: 23, ahead: 1, behind: 0, not found:

0).

FIG. 4 is a flow diagram 400 illustrating one example
embodiment of a method for operating an RPM verifier
module. At 402, the RPM verifier module retrieves and loads
a master configuration file and a list of host servers. The
master configuration file defines rules for approved versions
of software packages installed on each host server in the list
of host servers.

In one embodiment, the rules may be based on a name of
the software package, a version of the software package, and
the name of host servers where the software package is to be
installed.

In another embodiment, the rules defines an approved
version of a first software package for a first set of host
servers, and an approved version of the first software pack-
age for a second set of host servers.

20

25

30

35

40

45

50

55

60

65

6

In another embodiment, the rules comprises a first set of
rules applicable to a first set of host servers identified based
on a first set of host server names or a first pool of servers,
and a second set of rules applicable to a second set of host
servers identified based on a second set of host server names
or a second pool of servers.

At 404, the RPM verifier module queries each host server
in the list for a version identifier of one or more software
packages installed on each host server. The version identifier
includes, for example, a version number of the correspond-
ing software package (e.g. version 1.6).

At 406, the RPM verifier module receives a list of
installed software packages on each queried host server. For
example, the list may include the name and version of the
installed software package on the corresponding queried
host server.

At 408, the RPM verifier module parses and analyzes the
list of installed software packages on each queried server to
identify one or more mis-configured software packages on
each host server based on the master configuration file.

In one embodiment, the RPM verifier module repeats the
process (querying, receiving, parsing, and analyzing) for
each destination server. In another embodiment, the RPM
verifier module may process on all destination servers in
parallel.

FIG. 5 is a flow diagram 500 illustrating one example
embodiment of a method for identifying mis-configured
software packages on host servers. At 502, the RPM verifier
module loads the rules from the master configuration file.

At 504, the RPM verifier module compares the data from
the master configuration file with the information receives
from each host server. In other words, the RPM verifier
module compares the version number of the installed soft-
ware package with the approved version number from the
master configuration file.

At 506, the RPM verifier module identifies version dif-
ferences organized or grouped by software packages or by
host servers.

For example, a report is generated based on software
packages. The report identifies:

a number of host servers having a version of an installed
software package matching the version of the corre-
sponding software package approved in the rules,

a number of host servers having the version of the
installed software package ahead of the version of the
corresponding software package approved in the rules,

a number of host servers having the version of the
installed software package behind the version of the
corresponding software package approved in the rules,
and

a number of host servers missing the installed software
package specified in the rules.

In another example, the report is generated based on each

host server. The report identifies:

a number of installed software packages having a version
matching the version of the corresponding software
packages approved in the rules for each host server,

a number of installed software packages having a version
ahead of the version of the corresponding software
packages approved in the rules for each host server,

a number of installed software packages having a version
behind the version of the corresponding software pack-
ages approved in the rules for each host server, and

a number of software packages missing from each host
server.

FIG. 6 illustrates an example network environment 600 in

which various example embodiments may operate. In par-

US 9,448,780 B1

7

ticular embodiments, one or more described webpages may
be associated with a networking system or networking
service. However, alternate embodiments may have appli-
cation to the retrieval and rendering of structured documents
hosted by any type of network-addressable resource or web
site. Additionally, as used herein, a user may be an indi-
vidual, a group, or an entity (such as a business or third-party
application).

Network cloud 660 generally represents one or more
interconnected networks, over which the systems and hosts
described herein can communicate. Network cloud 660 may
include packet-based wide area networks (such as the Inter-
net), private networks, wireless networks, satellite networks,
cellular networks, paging networks, and the like. As FIG. 6
illustrates, particular embodiments may operate in a network
environment 600 comprising one or more networking sys-
tems, such as social networking system 620a, game net-
working system 6205, and one or more client systems 630.
The components of social networking system 620a and
game networking system 6205 operate analogously; as such,
hereinafter they may be referred to simply as networking
system 620. Client systems 630 are operably connected to
the network environment 600 via a network service pro-
vider, a wireless carrier, or any other suitable means.

Social networking system 620q is a network-addressable
computing system that can host one or more social graphs.
Social networking system 620a can generate, store, receive,
and transmit social networking data. Social networking
system 620a can be accessed by the other components of
network environment 600 either directly or via network
cloud 660. Game networking system 6205 is a network-
addressable computing system that can host one or more
online games. Game networking system 6205 can generate,
store, receive, and transmit game-related data, such as, for
example, game account data, game input, game state data,
and game displays.

Networking system 620 is a network addressable system
that, in various example embodiments, comprises one or
more physical servers 622 and data stores 624. The one or
more physical servers 622 are operably connected to net-
work cloud 660 via, by way of example, a set of routers
and/or networking switches 626. In an example embodi-
ment, the functionality hosted by the one or more physical
servers 622 may include web or HTTP servers, FTP servers,
as well as, without limitation, webpages and applications
implemented using Common Gateway Interface (CGI)
script, PHP Hyper-text Preprocessor (PHP), Active Server
Pages (ASP), HTML, XML, Java, JavaScript, Asynchronous
JavaScript and XML (AJAX), Flash, ActionScript, and the
like.

Physical servers 622 may host functionality directed to
the operations of networking system 620. Hereinafter, serv-
ers 622 may be referred to as server 622, although server 622
may include numerous servers hosting, for example, net-
working system 620, as well as other content distribution
servers, data stores, and databases. Data store 624 may store
content and data relating to, and enabling, operation of
networking system 620 as digital data objects. A data object,
in particular embodiments, is an item of digital information
typically stored or embodied in a data file, database, or
record. Content objects may take many forms, including:
text (e.g., ASCIL. SGML, HTML), images (e.g., jpeg, tif and
gif), graphics (vector-based or bitmap), audio, video (e.g.,
mpeg), or other multimedia, and combinations thereof.
Content object data may also include executable code
objects (e.g., games executable within a browser window or
frame), podcasts, and the like. Logically, data store 624

10

15

20

25

30

35

40

45

50

55

60

65

8

corresponds to one or more of a variety of separate and
integrated databases, such as relational databases and object-
oriented databases, that maintain information as an inte-
grated collection of logically related records or files stored
on one or more physical systems. Structurally, data store 624
may generally include one or more of a large class of data
storage and management systems. In particular embodi-
ments, data store 624 may be implemented by any suitable
physical system(s) including components such as one or
more database servers, mass storage media, media library
systems, storage area networks, data storage clouds, and the
like. In one example embodiment, data store 624 includes
one or more servers, databases (e.g., MySQL), and/or data
warehouses. Data store 624 may include data associated
with different networking system 620 users and/or client
systems 630.

Client system 630 is generally a computer or computing
device including functionality for communicating (e.g.,
remotely) over a computer network. Client system 630 may
be a desktop computer, laptop computer, personal digital
assistant (PDA), in- or out-of-car navigation system, smart
phone or other cellular or mobile phone, or mobile gaming
device, among other suitable computing devices. Client
system 630 may execute one or more client applications,
such as a web browser (e.g., Microsoft Internet Explorer,
Mozilla Firefox, Apple Safari, Google Chrome, and Opera),
to access and view content over a computer network. In
particular embodiments, the client applications allow a user
of client system 630 to enter addresses of specific network
resources to be retrieved, such as resources hosted by
networking system 620. These addresses can be Uniform
Resource Locators (URLs) and the like. In addition, once a
page or other resource has been retrieved, the client appli-
cations may provide access to other pages or records when
the user “clicks” on hyperlinks to other resources. By way
of example, such hyperlinks may be located within the
webpages and provide an automated way for the user to
enter the URL of another page and to retrieve that page.

A webpage or resource embedded within a webpage,
which may itself include multiple embedded resources, may
include data records, such as plain textual information, or
more complex digitally encoded multimedia content, such as
software programs or other code objects, graphics, images,
audio signals, videos, and so forth. One prevalent markup
language for creating webpages is HTML. Other common
web browser-supported languages and technologies include
XML, the Extensible Hypertext Markup Language
(XHTML), JavaScript, Flash, ActionScript, Cascading Style
Sheet (CSS), and, frequently, Java. By way of example,
HTML enables a page developer to create a structured
document by denoting structural semantics for text and
links, as well as images, web applications, and other objects
that can be embedded within the page. Generally, a webpage
may be delivered to a client as a static document; however,
through the use of web elements embedded in the page, an
interactive experience may be achieved with the page or a
sequence of pages. During a user session at the client, the
web browser interprets and displays the pages and associ-
ated resources received or retrieved from the website hosting
the page, as well as, potentially, resources from other
websites.

When a user at a client system 630 desires to view a
particular webpage (hereinafter also referred to as target
structured document) hosted by networking system 620, the
user’s web browser, or other document rendering engine or
suitable client application, formulates and transmits a
request to networking system 620. The request generally

US 9,448,780 B1

9

includes a URL or other document identifier as well as
metadata or other information. By way of example, the
request may include information identifying the user, such
as a user ID, as well as information identifying or charac-
terizing the web browser or operating system running on the
user’s client system 630. The request may also include
location information identifying a geographic location of the
user’s client system 630 or a logical network location of the
user’s client system 630. The request may also include a
timestamp identifying when the request was transmitted.

Although the example network environment 600
described above and illustrated in FIG. 6 is described with
respect to social networking system 620a and game net-
working system 62056, this disclosure encompasses any
suitable network environment using any suitable systems.
As an example and not by way of limitation, the network
environment may include online media systems, online
reviewing systems, online search engines, online advertising
systems, or any combination of two or more such systems.

FIG. 7 illustrates an example computing system architec-
ture, which may be used to implement a server 622 or a
client system 630, both shown in FIG. 6. In one embodi-
ment, hardware system 700 comprises a processor 702, a
cache memory 704, and one or more executable modules
and drivers, stored on a tangible computer-readable medium,
directed to the functions described herein. Additionally,
hardware system 700 may include a high performance
input/output (I/0) bus 706 and a standard I/O bus 708. A host
bridge 710 may couple processor 702 to high performance
1/0 bus 706, whereas I/O bus bridge 712 couples the two
buses 706 and 708 to each other. A system memory 714 and
one or more network/communication interfaces 716 may
couple to bus 706. Hardware system 700 may further include
video memory (not shown) and a display device coupled to
the video memory. Mass storage 718 and /O ports 720 may
couple to bus 708. Hardware system 700 may optionally
include a keyboard, a pointing device, and a display device
(not shown) coupled to bus 708. Collectively, these elements
are intended to represent a broad category of computer
hardware systems, including but not limited to general
purpose computer systems based on the x86-compatible
processors manufactured by Intel Corporation of Santa
Clara, Calif., and the x86-compatible processors manufac-
tured by Advanced Micro Devices (AMD), Inc., of Sunny-
vale, Calif., as well as any other suitable processor.

The elements of hardware system 700 are described in
greater detail below. In particular, network interface 716
provides communication between hardware system 700 and
any of a wide range of networks, such as an Ethernet (e.g.,
IEEE 802.3) network, a backplane, and the like. Mass
storage 718 provides permanent storage for the data and
programming instructions to perform the above-described
functions implemented in servers 622, whereas system
memory 714 (e.g., DRAM) provides temporary storage for
the data and programming instructions when executed by
processor 702. /O ports 720 are one or more serial and/or
parallel communication ports that provide communication
between additional peripheral devices, which may be
coupled to hardware system 700.

Hardware system 700 may include a variety of system
architectures, and various components of hardware system
700 may be rearranged. For example, cache 704 may be
on-chip with processor 702. Alternatively, cache 704 and
processor 702 may be packed together as a “processor
module,” with processor 702 being referred to as the “pro-
cessor core.” Furthermore, certain embodiments of the pres-
ent disclosure may not require nor include all of the above

10

15

20

25

30

35

40

45

50

55

60

65

10

components. For example, the peripheral devices shown
coupled to standard 1/O bus 708 may couple to high per-
formance I/O bus 706. In addition, in some embodiments,
only a single bus may exist, with the components of hard-
ware system 700 being coupled to the single bus. Further-
more, hardware system 700 may include additional compo-
nents, such as additional processors, storage devices, or
memories.

An operating system manages and controls the operation
of hardware system 700, including the input and output of
data to and from software applications (not shown). The
operating system provides an interface between the software
applications being executed on the hardware system 700 and
the hardware components of the hardware system 700. Any
suitable operating system may be used, such as the LINUX
Operating System, the Apple Macintosh Operating System,
available from Apple Computer Inc. of Cupertino, Calif.,
UNIX operating systems, Microsoft® Windows® operating
systems, BSD operating systems, and the like. Of course,
other embodiments are possible. For example, the functions
described herein may be implemented in firmware or on an
application-specific integrated circuit.

MISCELLANEOUS

Furthermore, the above-described elements and opera-
tions can be comprised of instructions that are stored on
non-transitory storage media. The instructions can be
retrieved and executed by a processing system. Some
examples of instructions are software, program code, and
firmware. Some examples of non-transitory storage media
are memory devices, tape, disks, integrated circuits, and
servers. The instructions are operational when executed by
the processing system to direct the processing system to
operate in accord with the disclosure. The term “processing
system” refers to a single processing device or a group of
inter-operational processing devices. Some examples of
processing devices are integrated circuits and logic circuitry.
Those skilled in the art are familiar with instructions,
computers, and storage media.

Certain embodiments described herein may be imple-
mented as logic or a number of modules, engines, compo-
nents, or mechanisms. A module, engine, logic, component,
or mechanism (collectively referred to as a “module”) may
be a tangible unit capable of performing certain operations
and configured or arranged in a certain manner. In certain
example embodiments, one or more computer systems (e.g.,
a standalone, client, or server computer system) or one or
more components of a computer system (e.g., a processor or
a group of processors) may be configured by software (e.g.,
an application or application portion) or firmware (note that
software and firmware can generally be used interchange-
ably herein as is known by a skilled artisan) as a module that
operates to perform certain operations described herein.

In various embodiments, a module may be implemented
mechanically or electronically. For example, a module may
comprise dedicated circuitry or logic that is permanently
configured (e.g., within a special-purpose processor, appli-
cation specific integrated circuit (ASIC), or array) to per-
form certain operations. A module may also comprise pro-
grammable logic or circuitry (e.g., as encompassed within a
general-purpose processor or other programmable proces-
sor) that is temporarily configured by software or firmware
to perform certain operations. It will be appreciated that a
decision to implement a module mechanically, in dedicated
and permanently configured circuitry, or in temporarily

US 9,448,780 B1

11

configured circuitry (e.g., configured by software) may be
driven by, for example, cost, time, energy-usage, and pack-
age size considerations.

Accordingly, the term “module” should be understood to
encompass a tangible entity, be that an entity that is physi-
cally constructed, permanently configured (e.g., hardwired),
or temporarily configured (e.g., programmed) to operate in
a certain manner or to perform certain operations described
herein. Considering embodiments in which modules or
components are temporarily configured (e.g., programmed),
each of the modules or components need not be configured
or instantiated at any one instance in time. For example,
where the modules or components comprise a general-
purpose processor configured using software, the general-
purpose processor may be configured as respective different
modules at different times. Software may accordingly con-
figure the processor to constitute a particular module at one
instance of time and to constitute a different module at a
different instance of time.

Modules can provide information to, and receive infor-
mation from, other modules. Accordingly, the described
modules may be regarded as being communicatively
coupled. Where multiples of such modules exist contempo-
raneously, communications may be achieved through signal
transmission (e.g., over appropriate circuits and buses) that
connect the modules. In embodiments in which multiple
modules are configured or instantiated at different times,
communications between such modules may be achieved,
for example, through the storage and retrieval of information
in memory structures to which the multiple modules have
access. For example, one module may perform an operation
and store the output of that operation in a memory device to
which it is communicatively coupled. A further module may
then, at a later time, access the memory device to retrieve
and process the stored output. Modules may also initiate
communications with input or output devices and can oper-
ate on a resource (e.g., a collection of information).

One or more features from any embodiment may be
combined with one or more features of any other embodi-
ment without departing from the scope of the disclosure.

A recitation of‘a,” “an.” or “the” is intended to mean “one
or more” unless specifically indicated to the contrary. In
addition, it is to be understood that functional operations,
such as “awarding,” “locating,” “permitting” and the like,
are executed by game application logic that accesses, and/or
causes changes to, various data attribute values maintained
in a database or other memory.

The present disclosure encompasses all changes, substi-
tutions, variations, alterations, and modifications to the
example embodiments herein that a person having ordinary
skill in the art would comprehend. Similarly, where appro-
priate, the appended claims encompass all changes, substi-
tutions, variations, alterations, and modifications to the
example embodiments herein that a person having ordinary
skill in the art would comprehend.

For example, the methods, game features and game
mechanics described herein may be implemented using
hardware components, software components, and/or any
combination thereof. By way of example, while embodi-
ments of the present disclosure have been described as
operating in connection with a networking website, various
embodiments of the present disclosure can be used in
connection with any communications facility that supports
web applications. Furthermore, in some embodiments the
term “web service” and “website” may be used interchange-
ably and additionally may refer to a custom or generalized
API on a device, such as a mobile device (e.g., cellular

10

15

20

25

30

35

40

45

50

55

60

65

12

phone, smart phone, personal GPS, PDA, personal gaming
device, etc.), that makes API calls directly to a server. Still
further, while the embodiments described above operate
with business-related virtual objects (such as stores and
restaurants), the disclosure can be applied to any in-game
asset around which a harvest mechanic is implemented, such
as a virtual stove, a plot of land, and the like. The specifi-
cation and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. It will, however, be
evident that various modifications and changes may be made
thereunto without departing from the broader spirit and
scope of the disclosure as set forth in the claims and that the
disclosure is intended to cover all modifications and equiva-
lents within the scope of the following claims.

The Abstract of the Disclosure is provided to comply with
37 C.FR. §1.72(b), requiring an abstract that will allow the
reader to quickly ascertain the nature of the technical dis-
closure. It is submitted with the understanding that it will not
be used to interpret or limit the scope or meaning of the
claims. In addition, in the foregoing Detailed Description, it
can be seen that various features are grouped together in a
single embodiment for the purpose of streamlining the
disclosure. This method of disclosure is not to be interpreted
as reflecting an intention that the claimed embodiments
require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
subject matter lies in less than all features of a single
disclosed embodiment. Thus the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment.

What is claimed is:

1. A server comprising:

a storage device comprising a master configuration file
and a list of host servers, the master configuration file
that defines rules for approved versions of software
packages installed on each host server in the list and
that defines one or more required software packages,
each software package being a separately manageable
software unit containing multiple software files pack-
aged together for automated collective Installation,

and a computer-implemented software package verifier
module configured to:

query each host server in the list for a version identifier of
one or more Installed software packages in each host
servet,

parse information received from each host server in
response to the query for a host server name, a software
package installed on each host server, and the version
of the Installed software package;

and to apply the rules for each host server to the version
identifiers to identify one or more mis-configured soft-
ware packages on each host server, and

for each one of the listed host servers that has one or more
of the software packages missing therefrom, identify
the one or more missing software packages for the
respective host server based on comparing the corre-
sponding one or more installed software packages with
definition in the master configuration file of the one or
more required software packages and applying busi-
ness logic on the results of the comparison.

2. The server of claim 1, wherein the computer-imple-
mented software package verifier is configured to identify
one or more software packages installed on a host server
having a newer version compared to the approved version of
the corresponding software package for the host server as
defined in the rules.

US 9,448,780 B1

13

3. The server of claim 1, wherein the computer-imple-
mented software package verifier is configured to identify
one or more software packages installed on a host server
having an older version compared to the approved version of
the corresponding software package for the host server as
defined in the rules.
4. The server of claim 1, wherein the computer-imple-
mented software package verifier module comprises:
a querying module configured to query each host server in
the list for the version identifier of one or more installed
software packages in each host server;
a parsing module configured to parse information
received from each host server in response to the query
for a host server name, a software package installed on
each host server, and the version of the installed soft-
ware package; and
an analysis module configured to apply the rules to the
parsed information to identify, for each host server:
any software packages missing from the host server,
and

one or more installed software packages having a
newer or older version compared to the approved
version of the corresponding software package as
defined in the rules.

5. The server of claim 4, wherein the analysis module is
configured to generate a report based on software packages,
the report identifying a number of host servers having a
version of an installed software package matching the ver-
sion of the corresponding software package approved in the
rules, the number of host servers having the version of the
installed software package ahead of the version of the
corresponding software package approved in the rules, the
number of host servers having the version of the installed
software package behind the version of the corresponding
software package approved in the rules, and the number of
host servers missing the installed software package specified
in the rules.

6. The server of claim 4, wherein the analysis module is
configured to generate a report based on each host server, the
report identifying a number of installed software packages
having a version matching the version of the corresponding
software packages approved in the rules for each host server,
the number of installed software packages having a version
ahead of the version of the corresponding software packages
approved in the rules for each host server, the number of
installed software packages having a version behind the
version of the corresponding software packages approved in
the rules for each host server, and the number of software
packages missing from each host server.

7. The server of claim 1, wherein the rules are based on
a name of the software package, a version of the software
package, and the name of host servers where the software
package is to be installed.

8. The server of claim 1, wherein the rules defines an
approved version of a first software package for a first set of
host servers, and the approved version of the first software
package for a second set of host servers.

9. The server of claim 1, wherein the rules comprises a
first set of rules applicable to a first set of host servers
identified based on host server names, and a second set of
rules applicable to a second set of host servers identified
based on host server names.

10. The server of claim 1, wherein the rules comprises a
first set of rules applicable to a first set of host servers of a
first server pool, and a second set of rules applicable to a
second set of host servers of a second server pool.

20

25

30

35

40

45

50

55

14

11. A computer-implemented method comprising:
retrieving a master configuration file and a list of host
servers, the master configuration file that defines rules
for approved versions of software packages Installed on
each host server in the list and that defines one or more
required software packages, each software package
being a separately manageable software unit containing
multiple software files packaged together for auto-
mated collective installation, querying each host server
in the list for a version identifier of one or more
software packages installed on each host server;
parse information received from each host server in
response to the query for a host server name, a software
package installed on each host server, and the version
of the installed software package;
applying the rules for each host server to the version
identifiers to identify one or more mis-configured soft-
ware packages on each host server; and
for each one of the listed host servers that has one or more
software packages missing therefrom, identifying the
one or more missing software packages for the respec-
tive host server based on comparing the corresponding
one or more installed software packages with definition
in the master configuration file of the one or more
required software packages and applying business logic
on the results of the comparison.
12. The computer-implemented method of claim 11, fur-
ther comprising:
identifying one or more software packages installed on
each host server having a newer version compared to
the approved version of a corresponding software pack-
age for the host server as defined in the rules; and
identifying one or more software packages installed on
each host server having an older version compared to
the approved version of the corresponding software
package for the host server as defined in the rules.
13. The computer-implemented method of claim 11, fur-
ther comprising:
querying each host server in the list for the version
identifier of one or more software packages installed on
each host server;
parsing information received from each host server in
response to the query for a host server name, a software
package installed on each host server, and a version of
the installed software package; and
applying the rules to the parsed information to identify,
for each host server:
any software packages missing therefrom, and
one or more software packages installed thereon having
a newer or older version compared to the approved
version of a corresponding software package as
defined in the rules.
14. The computer-implemented method of claim 13, fur-
ther comprising:
generating a report based on software packages, the report
identifying a number of host servers having a version of
an installed software package matching the version of
a corresponding software package approved in the
rules, a number of host servers having the version of the
installed software package ahead of the version of the
corresponding software package approved in the rules,
the number of host servers having the version of the
installed software package behind the version of the
corresponding software package approved in the rules,
and the number of host servers missing the installed
software package specified in the rules.

US 9,448,780 B1

15

15. The computer-implemented method of claim 13, fur-
ther comprising:

generating a report based on each host server, the report

identifying a number of installed software packages
having a version matching the version of a correspond-
ing software packages approved in the rules for each
host server, the number of installed software packages
having a version ahead of the version of the corre-
sponding software packages approved in the rules for
each host server, the number of installed software
packages having a version behind the version of the
corresponding software packages approved in the rules
for each host server, and the number of software
packages missing from each host server.

16. The computer-implemented method of claim 11,
wherein the rules are based on a name of the software
package, a version of the software package, and a name of
host servers where the software package is to be installed.

17. The computer-implemented method of claim 11,
wherein the rules define an approved version of a first
software package for a first set of host servers, and an
approved version of the first software package for a second
set of host servers.

18. The computer-implemented method of claim 11,
wherein the rules comprise a first set of rules applicable to
a first set of host servers identified based on a first set of host
server names or a first pool of servers, and a second set of
rules applicable to a second set of host servers identified
based on a second set of host server names or a second pool
of servers.

5

10

20

16

19. A non-transitory computer readable storage medium
storing a set of instructions that, when executed by at least
one processor, cause the processor to perform operations
comprising:
retrieving a master configuration file and a list of host
servers, the master configuration file that, defines rules
for approved versions of software packages installed on
each host server in the list and that defines one or more
required software packages, each software package
being a separately manageable software unit containing
multiple software files packaged together for auto-
mated collective installation, querying each host server
in the list for a version identifier of one or more
software packages installed on each host server;

parse information received from each host server in
response to the query for a host server name, a software
package installed on each host server, and the version
of the installed software package;

applying the rules for each host server to the version

identifier to identify one or more mis-configured soft-
ware packages on each host server; and

for each one of the listed host servers that has one or more

software packages missing therefrom, identifying the
one or more missing software packages for the respec-
tive host server based on comparing the corresponding
one or more installed software packages with definition
in the master configuration file of the one or more
required software packages and applying business logic
on the results of the comparison.

#* #* #* #* #*

